MAKING SENSE OF FIR LINE EMISSION WITH SYNTHETIC OBSERVATIONS KAREN PARDOS OLSEN

	Topics to cover
Background	- Far Infrared (FIR) line emission - Open Science questions
SÍGAME module	 Extractig galaxies from cosmological simulations Subgrid procedures
Recent and preliminary results	 NEW: Line ratios as diagnostic tools Collaboration and Project management on GitHub
	Future projects

Not all lines are equally accesible

Why FIR?

FIR lines are

 often strongest
 because they
 avoid dust
 attenuation

Not all lines are equally accesible

 $\sim 15~\mu m$ to 1 mm

dust grain

https://www.ast.cam.ac.uk/research/galaxies.and.active.galactic.nuclei/kingfish/science

Why FIR?

- FIR lines are

 often strongest
 because they
 avoid dust
 attenuation
- Large groundbased
 telescopes
 with bands in
 the radio, can
 detect these
 lines at high z

FIR lines are easier to model (and sometimes observe)

~ 15 µm to 1 mm

The Atacama Large Millimeter/submillimeter Array (ALMA)

dust grain

How can line
 ratios help in
 diagnosing
 the ISM?

 How can line ratios help in diagnosing the ISM?

The [CII]158/[NII]205 ratio

 How can line ratios help in diagnosing the ISM?

The [CII]158/[NII]205 ratio

Fine-structure lines that together give the fraction of [CII] coming from neutral gas:

$$f_{[C II],Neutral} = \frac{[C II] - R_{ionized} \times [N II] 205 \ \mu m}{[C II]}$$

The [CII]158/[NII]205 ratio

CrossMark

K. V. Croxall^{1,2,3}, J. D. Smith^{2,4}, E. Pellegrini^{4,5}, B. Groves⁶, A. Bolatto⁷, R. Herrera-Camus⁸, K. M. Sandstrom⁹, B. Draine¹⁰, M. G. Wolfire⁷, L. Armus¹¹, M. Boquien¹², B. Brandl^{13,14}, D. Dale¹⁵, M. Galametz^{16,17}, L. Hunt¹⁸, R. Kennicutt, Jr.¹⁹, K. Kreckel², D. Rigopoulou²⁰, P. van der Werf¹³, and C. Wilson²¹

The Origins of [C II] Emission in Local Star-forming Galaxies

[Croxall+17]

- How can line ratios help in
 diagnosing the ISM?
- Weak
 dependence
 on surface
 density of SFR

The [CII]158/[NII]205 ratio

- How can line
 ratios help in
 diagnosing
 the ISM?
- Weak
 dependence
 on surface
 density of SFR

The [CII]158/[NII]205 ratio

Increase towards central parts of galaxy with higher Σ_{SFR} (and more neutral gas)

- How can line
 ratios help in
 diagnosing
 the ISM?
- Other FIR line
 ratios have
 been used to
 estimate
 metallicity Z

The [OIII] 88/[NII] 122 ratio

On the far-infrared metallicity diagnostics: applications to high-redshift galaxies

D. Rigopoulou,^{1*} M. Pereira-Santaella¹, G.E. Magdis², A. Cooray³, D. Farrah⁴, [Rigopoulou+17] R. Marques-Chaves^{5,6}, I. Perez-Fournon^{5,6}, D. Riechers⁷

- How can line
 ratios help in
 diagnosing
 the ISM?
- Other FIR line
 ratios have
 been used to
 estimate
 metallicity Z

The [OIII] 88/[NII] 122 ratio

Can be used as a rough metallicity indicator, if you also now ionization parameter U?

SESE April 20 2018

[Rigopoulou+17]

State of the art...

Problems
 associated
 with the
 observations
 of ISM
 properties

Not the actual Z, but **a proxy for Z** using optical emission lines and indirect/direct methods (see Moustakas+10)

Problems

 associated
 with the
 observations
 of ISM
 properties

$$\Sigma_{\rm SFR}(M_{\odot} \,{\rm yr}^{-1} \,{\rm kpc}^{-2}) = 3.823 \times 10^{-47} \times (\Sigma_{\rm [C\,II]}({\rm erg} \,{\rm s}^{-1} \,{\rm kpc}^{-2}) \times \Psi)^{1.130}$$

Problems

 associated
 with the
 observations
 of ISM
 properties

Models made with **single-value cells**

log(n _H) [cm-3]	log(U)	
1	-2	
2	-2.5	
3	-3	
4	-3.5	
5	-4	

State of the art...

Problems
 associated
 with the
 observations
 of ISM
 properties

When really, looking at resolved observations of a region in a galaxy, you see **many clouds superimposed**

Each with a different set of $[n_H, U, Z, T_k...]$

State of the art...

- Problems

 associated
 with the
 observations
 of ISM
 properties
- Open
 questions that
 can be better
 answered via
 modeling

Can resolved observations of [CII]/[NII]205 be used:

- 1) to estimate actual ionized gas mass fraction?
- 2) to estimate gas metallicity?
- 3) and how does that callibration depend on Σ_{SFR} (or other ISM properties)?

My current work!

 Started during PhD at Dark Cosmology Centre in Copenhagen (='follow me' in Spanish)

SImulator of GAlaxy Millimeter/submillimeter Emission

DTU Elektro March 21 2017

My current work!

- Started during PhD at Dark Cosmology Centre in Copenhagen
- Now a project that combines...

SImulator of GAlaxy Millimeter/submillimeter Emission

DTU Elektro March 21 2017

(='follow me' in Spanish)

Key steps

- 1.Extract galaxies from simulation
- 2. Derive largescale ISM properties

Example of grid of solutions with **Cloudy** (the photoionization code) for the [CII] line

Key steps

- 1.Extract galaxies from simulation
- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of "Cloudy" models for line emission etc.

Example of grid of solutions with **Cloudy** (the photoionization code) for the [CII] line

Key steps

- 1. Extract galaxies from simulation
- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of cloudy models for line emission etc.

Key steps

- 1.Extract galaxies from simulation
- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of cloudy models for line emission etc.
- 5. Create and analyze datacubes!

Video from datacube in space and velocity:

z = 6.125, L_CII, G0 : -590.0 [km/s]

Work with student Jacob Cluff

Recent results

 With SÍGAME we can look at the FIR line emission coming from different ISM phases

Recent results

Non-detections of [CII] at high redshift is a signature of **low metallicity** combined with low molecular gas masses

[CII], [OI] and [OIII] lines in z~6 galaxies

Recent results

Non-detections of [CII] at high redshift is a signature of **low metallicity** combined with low molecular gas masses

At the same time, the **[OIII]-**SFR relation

matched that at low z and two of three high-z galaxies detected so far.

[CII], [OI] and [OIII] lines in z~6 galaxies

Olsen et al. 2017, ApJ 846

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations Create synthetic observations similar to resolved *Herschel* observations:

Herrera-Camus+16

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations Create synthetic observations similar to resolved *Herschel* observations:

• Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Step 1/5: Extract z=0 galaxies from zoom simulation

	M _{star}	Mgas	M _{mol} / M _{aas}	SFR	DL
G1	7.10E+08	2.57E+09	9%	0.1876	12.77
G2	4.95E+09	4.87E+09	15%	0.7855	9.99
G3	6.43E+09	8.41E+09	9%	1.5130	13.57
G4	9.58E+09	9.09E+09	13%	1.5406	8.79
G5	3.16E+10	3.21E+10	8%	5.58	7.46

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Step 2/5: Subgrid to get ISM properties

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Step 3/5: Create datacubes of emission

... and divide to get a line ratio map

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Step 4/5: Extract regions from those line ratio maps

Step 5/5: Correlate with ISM properties - such as Σ_{SFR}

Work with student Lily Whitler

SESE April 20 2018

Preliminary

results

Step 5/5: Correlate with ISM properties - or neutral fraction of [CII]

Preliminary

results

Answer these questions:

- 1) to estimate actual ionized gas mass fraction?
- 2) to estimate gas metallicity?
- 3) and how does that callibration depend on $\Sigma_{\text{SFR}}?$

Answer these questions:

- 1) to estimate actual ionized gas mass fraction?
- 2) to estimate gas metallicity?
- 3) and how does that callibration depend on $\Sigma_{\text{SFR}}?$

... expand analysis to more line ratios and larger galaxy sample, in preparation for NASA ADAP:

Archival Herschel spectroscopy of star-forming galaxies in the light of multi-phase ISM galaxy simulations

Karen Olsen, Huan Yang, Desika Narayanan, Julia Kamenetzky, Sangeeta Malhotra, Naseem Rangwala, Romeel Davé and Thomas Greve

Future projects

Helping out with a workshop next year in Sweden

... as follow-up of my workshop in March:

SUMMARY

Synthetic observations are important for understanding/predicting real observations.

Future

- 1. Study line ratios like [CII]/[NII]205 and compare with resolved observations of nearby galaxies
 - Run more galaxies, do a Principle Component of Bayesian analysis of ISM parameter space
- 2. Use SÍGAME to analyze [CII], [NII], [OI], [OIII] from ~230 nearby galaxies (NASA ADAP)
- 3. Improve work flow of code for future users.
- 4. Help organize a 4-week workshop in Sweden next year on line simulations.