Reading between the lines

The benefits of modeling more than one emission line

	Topics to cover
Background	 What can go wrong when we only model one line? What science cases benefit from FIR line ratios?
SIGAME	 Brief description of SIGAME <u>https://kpolsen.github.io/SIGAME/index.html</u>
Modeling line ratios at z~0	- Imitating <i>Herschel</i> - Line ratios as diagnostic tools of the ISM
	Suggestions for discussion

Diagnostic
 FIR emission
 lines

The same galaxy with different glasses:

Diagnostic
 FIR emission
 lines

The same galaxy with different glasses:

Hot ionized ISM

[OIII], Lyα, Hα, etc.

<u>(HII regions, ≈10,000 K)</u>

Photodissociation regions (PDRs) [CII], [NII], [CI], [OI] <u>Warm neutral medium</u> (5000 – 10,000 K) [CII]

> <u>Molecular ISM</u> (GMCs, 10 – 50 K) [CII], CO rotational lines

Diagnostic
 FIR emission
 lines

The same galaxy with different glasses:

<u>Hot ionized ISM</u> (HII regions, $\approx 10,000$ K) [OIII], Lya, Ha, etc.

<u>Warm neutral medium</u> (5000 – 10,000 K) [CII]

Attention modelers: By only looking at one ISM phase, we may be compensating by modeling another ISM phase wrongly.

Photodissociation regions (PDRs) [CII], [NII], [CI], [OI] <u>Molecular ISM</u> (GMCs, 10 – 50 K) [CII], CO rotational lines

- Diagnostic
 FIR emission
 lines
- Lessons from
 "Walking the
 Line
 workshop"
 last year

Conference Report Challenges and Techniques for Simulating Line Emission

Karen P. Olsen ^{1,*} ⊠[®], Andrea Pallottini ^{2,3} ⊠[®], Aida Wofford ⁴ ⊠[®], Marios Chatzikos ⁵ ⊠[®], Mitchell Revalski ⁶ ⊠[®], Francisco Guzmán ⁵ ⊠[®], Gergö Popping ⁷ ⊠[®], Enrique Vázquez-Semadeni ⁸ ⊠, Georgios E. Magdis ⁹ ⊠[®], Mark L. A. Richardson ¹⁰ ⊠, Michaela Hirschmann ¹¹ ⊠ and William J. Gray ¹² ⊠

"One of the more valuable conclusions from the discussions on galaxyscales simulations, was **the importance of simulating more than one emission line simultaneously**. By simulating different lines, arising in different ISM phases, and comparing with observations, one ensures that the post-process recipes not only satisfy what is seen in one ISM phase, but is **consistent across the entire galaxy**."

(='follow me' in Spanish)

 Started during PhD at Dark Cosmology Centre in Copenhagen

SImulator of GAlaxy Millimeter/submillimeter Emission

SImulator of GAlaxy Millimeter/submillimeter Emission

(='follow me' in Spanish)

- Started during PhD at Dark Cosmology Centre in Copenhagen
- Now a project that combines...

We chose cosmological Sorrow!

(='follow me' in Spanish)

- Started during PhD at Dark Cosmology Centre in Copenhagen
- Now a project that combines...

We chose cosmological Sorrow! Simulations...

- ... for the sample size and cosmological variance.
- Hydrodynamics solver: meshless finite mass (MFM)
- SPH fluid element approach Gizmo → Mufasa (zoom-ins) → Simba
- Mass resolution: m_{DM} = 10⁶ h⁻¹Msun, m_{gas} = 1.9 x 10⁵ h⁻¹Msun
- Tracking 10 elements in addition to Hydrogen
- Stellar winds from young stars from fit to FIRE simulations (Feedback in Realistic Environments, Muratov et al. 2015)

 Extract galaxies from simulation

Cosmological hydrodynamic simulations (GIZMO simulations with MUFASA winds, see Davé+16 MNRAS 462)

- 1. Extract galaxies from simulation
- 2. Derive largescale ISM properties

FUV radiation (G_0) map made with starburst99

- 1. Extract galaxies from simulation
- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of Cloudy v17 models for line emission etc.

Example of grid of solutions with **Cloudy** (the photoionization code) for the [CII] line

Shameless self-promotion

Just made* a 2nd release of SIGAME, now in Python3

Check out the new website with code release and documentation:

https://kpolsen.github.io/SIGAME/index.html

*With **much** help from **Daisy Leung** (Cornell/Flatiron), Lily Whitler (ASU) and Satish Bhambri (CIDSE, Software Engineering ASU)

How can line
 ratios help in
 diagnosing
 the ISM?

 How can line ratios help in diagnosing the ISM?

The [CII]158/[NII]205 ratio

 How can line ratios help in diagnosing the ISM?

The [CII]158/[NII]205 ratio

If you know what that ratio is in fully ionized gas ($R_{ionized}$), you get how much of the [CII] comes from neutral gas:

$$f_{[C II],Neutral} = \frac{[C II] - R_{ionized} \times [N II] 205 \ \mu m}{[C II]}$$

Can we use [CII]158/[NII]205 to estimate neutral/ionized gas mass ratio?

Caveat: Line
 ratio also
 depends on
 gas
 metallicity

The [CII]158/[NII]205 ratio

CrossMark

The Origins of [C II] Emission in Local Star-forming Galaxies

K. V. Croxall^{1,2,3}, J. D. Smith^{2,4}, E. Pellegrini^{4,5}, B. Groves⁶, A. Bolatto⁷, R. Herrera-Camus⁸, K. M. Sandstrom⁹, B. Draine¹⁰, M. G. Wolfire⁷, L. Armus¹¹, M. Boquien¹², B. Brandl^{13,14}, D. Dale¹⁵, M. Galametz^{16,17}, L. Hunt¹⁸, R. Kennicutt, Jr.¹⁹, K. Kreckel², D. Rigopoulou²⁰, P. van der Werf¹³, and C. Wilson²¹

[Croxall+17]

K. V. Croxall^{1,2,3}, J. D. Smith^{2,4}, E. Pellegrini^{4,5}, B. Groves⁶, A. Bolatto⁷, R. Herrera-Camus⁸, K. M. Sandstrom⁹, B. Draine¹⁰, M. G. Wolfire⁷, L. Armus¹¹, M. Boquien¹², B. Brandl^{13,14}, D. Dale¹⁵, M. Galametz^{16,17}, L. Hunt¹⁸, R. Kennicutt, Jr.¹⁹, K. Kreckel², D. Rigopoulou²⁰, P. van der Werf¹³, and C. Wilson²¹

[Croxall+17]

- How can line ratios help in diagnosing the ISM?
- Caveat: Line
 ratio also
 depends on
 gas
 gas
 metallicity
 and SFR
 surface
 density.

The [CII]158/[NII]205 ratio

Is [CII] emission from neutral regions suppressed less by pressure?

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Create synthetic observations similar to resolved *Herschel* observations:

Herrera-Camus+16

 Goal: Simulating line ratios in resolved nearby galaxies to compare with resolved observations

Create synthetic observations similar to resolved *Herschel* observations:

MUFASA simulations by Desika Narayanan @ UF

- Check #1: that we reproduce the [CII]-SFR relation at z~0
- Smooth the resulting line emission maps by Herschel beam and select regions

Applying SÍGAME to 10 z~0 galaxies from zoom simulations

Correlate line ratios with ISM Modeling line properties - such as neutral [CII] ratios at z~0 fraction 10⁰ $\log(\Sigma_{SFR, exact}) [M_{\odot}/yr/kpc^2$ 10^{-1} fneutral, [CII] 10⁻² Analytical expression [Croxall+17] 101 10² [CII]/[NII]205

Work with student Lily Whitler @ ASU

Create diagnostic line ratio plots

S

Can we use FIR FS line ratios to:

to estimate actual ionized gas mass fraction?
 to estimate gas metallicity (mass-weighted)?
 and how do such callibrations depend on Σ_{SFR}?

Approach in Pallottini+19

Approach in Pallottini+19

Summary

Synthetic observations are important for understanding/predicting real observations.

Questions for discussion session!!!

- 1. How can we motivate observers to go for more lines?
- 2. How do we make sure that the FUV radiation is distributed consistently?
- 3. Should we start an effort to benchmark our codes?

Extra slides

[CII], [OI], [OIII] results at z~6 Low [CII] luminosity comes out naturally for the normal star-forming galaxies selected.

[CII], [OI], [OIII] results at z~6

Low [Cll]
 luminosity
 comes out
 naturally for
 the normal
 star-forming
 galaxies
 selected.

 Higher [CII] luminosity is an affect of higher metallicity than expected and/or higher molecular gas mass fraction.

[CII]-SFR relation at z~6

Olsen et al. 2018

Olsen et al. 2018

Line ratios

Line Ratio observations

- How can line ratios help in diagnosing the ISM?
- Weak
 dependence
 on surface
 density of
 SFR

The [CII]158/[NII]205 ratio

Line Ratio observations

- How can line ratios help in diagnosing the ISM?
- Other FIR line
 ratios have
 been used to
 estimate
 metallicity Z

The [OIII] 88/[NII] 122 ratio

On the far-infrared metallicity diagnostics: applications to high-redshift galaxies

D. Rigopoulou,^{1*} M. Pereira-Santaella¹, G.E. Magdis², A. Cooray³, D. Farrah⁴, R. Marques-Chaves^{5,6}, I. Perez-Fournon^{5,6}, D. Riechers⁷

[Rigopoulou+17]

Line Ratio observations

- How can line ratios help in diagnosing the ISM?
- Other FIR line
 ratios have
 been used to
 estimate
 metallicity Z

The [OIII] 88/[NII] 122 ratio

Can be used as a rough metallicity indicator, if you also now ionization parameter U? [Rigopoulou+17]

State of the art...

Problems
 associated
 with the
 observations
 of ISM
 properties

Problems

 associated
 with the
 observations
 of ISM
 properties

Not the actual Z, but **a proxy for Z** using optical emission lines and indirect/direct methods (see Moustakas+10)

Problems
 associated
 with the
 observations
 of ISM
 properties

$$\Sigma_{\rm SFR}(M_{\odot} \,{\rm yr}^{-1} \,{\rm kpc}^{-2}) = 3.823 \times 10^{-47} \times (\Sigma_{\rm [C\,II]}({\rm erg} \,{\rm s}^{-1} \,{\rm kpc}^{-2}) \times \Psi)^{1.130}$$

State of the art...

Problems

 associated
 with the
 observations
 of ISM
 properties

Models made with **single-value cells**

log(n _⊦) [cm-3]	log(U)
1	-2
2	-2.5
3	-3
4	-3.5
5	-4

State of the art...

Problems

 associated
 with the
 observations
 of ISM
 properties

When really, looking at resolved observations of a region in a galaxy, you see many clouds superimposed

[Rigopoulou+17]

Each with a different set of $[n_H, U, Z, T_k...]$

- 1.Extract galaxies from simulation
- 2. Derive largescale ISM properties

FUV radiation (G₀) map made with starburst99

Example of grid of solutions with **Cloudy** (the photoionization code) for the [CII] line

- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of "Cloudy" models for line emission etc.

Work with student Luis R. Niebla

Example of grid of solutions with **Cloudy** (the photoionization code) for the [CII] line

running models on Pleiades Supercomputer @ NASA with multiprocessing.Pool() Work with student Luis R. Niebla

Key steps

- 1.Extract galaxies from simulation
- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of cloudy models for line emission etc.

Key steps 1.Extract galaxies from simulation

- 2. Derive largescale ISM properties
- 3. Divide ISM into dense and diffuse gas
- 4. Interpolate in grids of cloudy models for line emission etc.
- 5. Create and analyze datacubes!

Video from datacube in space and velocity:

Work with student Jacob Cluf

[CII] as a SFR indicator (cf. talks by O. Le Fevre and A. Faisst)

A reminder...

Can arise from all ISM phases

- Ionization potential (11.3eV) below that of hydrogen (13.6eV)
- Excited by collisions with either electrons, atoms or molecules

Intensity depends mainly on density and temperature of gas

 ISM heated by young stars emit more [CII]

At low redshift

 [CII] as a SFR indicator (cf. talks by O. Le Fevre and A. Faisst)

Background

de Looze at al. 2014

At high z (< 5)... ?

 [CII] as a SFR indicator (cf. talks by O. Le Fevre and A. Faisst)

Background

http://www.tng-project.org/

300 Mpc