

Karen Pardos Olsen, postdoc at Center for Electric Power and Energy

Analysing power consumption and generation on Bornholm: Best energy storage options for high shares of renewables

Agenda

Penetration of renewable energy (RE) on Bornholm
"where we are" numbers with PowerLabDK data

2. Optimal energy storage (ES) options for Bornholm

- a method based on Fourier analysis

3. Increasing the time resolution from 1hr to 1min

- the potential of houses and Evs

4. Using data to verify simulations of wind power production

Why do we care about energy storage?

The most green option, and potentially the cheapest in the future...

[www.colourbox.dk]

February 18 2019 Danmarks Tekniske Universitet

α_{RE} : Hourly share of renewables

α_{RF} : Hourly share of renewables

Duration of consecutive high/low α_{RE} :

Duration of consecutive high/low α_{RE} :

Duration of consecutive high/low α_{RE} :

Start times of epochs with high/low α_{RF} :

REVIEW ARTICLE

A review of Danish integrated multi-energy system flexibility options for high wind power penetration

Jiawei Wang, Yi Zong*, Shi You and Chresten Træholt

Center for Electric Power and Energy, CEE, Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark

"The electrification of heat generation will also play an important role in balancing wind power fluctuation and realizing the 100% green target for the power and heating systems. Emerging technology with gas systems will establish the long-term electrical energy storage and future ancillary services will provide power balancing." - 2017

Figure 2: Mapping storage technologies according to performance characteristics

Source: PwC, 2015, following Sterner et al. 2014

Potential ES options on Bornholm:

- 1. V2G of EVs (ACES: https://sites.google.com/view/aces-bornholm)
- 2. Batteries (BOSS 1 MWh)
- **3.** Heating in residential houses (EcoGrid2.0: Fabian Müller & Bernhard Jansen 2018: arXiv:1806.07670, Ziras et al. 2018 submitted)
- 4. Electricity to DH facility (large hot water tank)
- 5. Flexibility in larger buildings, such as the hospital in Rønne (FUTURE)
- 6. More?

Flexibility in a hospital [FUTURE]

Using lake water to heat/cool hospital with 8 heat pumps of 4 kW each:

The 2 x 4 heat pumps:

Goal: to compensate for the residual load (consumption - production)

Goal: to compensate for the residual load (consumption - production)

February 18 2019 Danmarks Tekniske Universitet

The residual load can be decomposed into different frequency components with a Fourier transform:

The integrated power at each frequency tells us what ES options are more important:

Isolating just the shortest fluctuations, how many residential houses would they correspond to?:

Each house with heat pump can on average react with 0.79 kW in good conditions (temperature = -3.5, throttle signal no longer than 1 hour)
[Müller+18]

If an ES option works at a power of P_{ES} , the power in a frequency interval *i* corresponds to a number of $N_{ES}(t)$ in each time step dt:

 $N_{ES}(t) = iFFT(t)/(P_{ES})$

Isolating just the shortest fluctuations, how many residential houses would they correspond to?:

Isolating just the shortest fluctuations, how many residential houses would they correspond to?:

 Each house with heat pump can on average react with 0.79 kW in good conditions (temperature = -3.5, throttle signal no longer than 1 hour)
[Müller+18]

Electric heaters might yield more [Ziras et al. submitted]

The integrated power of each frequency interval:

Hourly resolution data

Minute resolution data

Isolating just the shortest fluctuations, how many EVs would they correspond to?:

~3.6 kW house [ACES: González-garrido et al. in prep]

Isolating just the shortest fluctuations, how many EVs would they correspond to?:

Isolating just the shortest fluctuations, how many EVs would they correspond to?:

• Using mean residual load in 15 min intervals:

Isolating just the shortest fluctuations, how many EVs would they correspond to?:

Caveats - actual EV availability follows a pattern, as simulations show:

200 EVs

17,000 EVs

200 EVs

Isolating just the shortest fluctuations, how many EVs would they correspond to?:

Caveats - actual EV availability follows a pattern, as simulations show:

17,000 EVs

With the current (residential only) chargers, there are times of the day with no EV (dis)charging possible. [ACES]

Hourly ramps with data from Energinet and PowerLabDK:

Simulations by Matti Koivisto, DTU Wind Energy

Extra slides...

Energy in frequency interval i:

$$E_i[MW * dt] = \int_{t_{start}}^{t_{end}} abs(iFFT_i(t))dt,$$

Mean power in time span Δt , measured in time steps dt:

$$\langle P_i[MW] \rangle = E_i[MW * dt]/(\Delta t[dt])$$

If an ES option works at a power of P_{ES} over that entire time span, it would take a number of:

$$N_{ES} = P_i / (P_{ES})$$

- we consider dt from 1 min to 1 hour, and time spans (Δt) of 1 hour.

Operational flexibility provided by storage in generation expansion planning with high shares of renewables

Arne van Stiphout^{1, 2}, Kristof De Vos^{1, 2}, Geert Deconinck^{1, 2}

"...as the RES target increases, and with it the need for operational flexibility, storage has more added value." - 2015

Why do we care about energy storage?

Siting and Sizing Dispersed Energy Storage in Power Transmission Networks

M. Moreira da Silva¹, R. Pastor¹, T. Shi², L. Zhao^{1,2}, J. Ye²

"The algorithm is able to find solutions that minimize the total storage capacity and energy requirement, while reducing the investment cost. Yet a longer period of evaluation, with more scenarios and a real case study, are desirable to deepen the validation process of the algorithm." - 2015