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Credit: Robert Gendler

Andromeda (M31) 
in optical 

Out of dense, cold gas

How are stars formed?
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Towards a better understanding the 
Interstellar Medium (ISM)

Models of galaxy evolution have been focused 
on stellar and dark matter component

Simulations on smaller 
scale follow the actual 

star formation

[Dale+12]
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redshift z0
2

6
Galaxy evolution

z=2, an 
interesting epoch!



 z ~ 2: A phase change



 z ~ 2: A phase change

1. Peak of cosmic SFR density [e.g. Madau+14] 
(the universe was more efficient at producing stars)
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 z ~ 2: A phase change

1. Peak of cosmic SFR density [e.g. Madau+14] 
(the universe was more efficient at producing stars)

2. Peak of galactic nucleus activity [e.g. Bauer+10] 
(SMBHs were consuming more gas)

3. Higher (major) merger rate than today [e.g. Man+14] 
(galaxies were interacting more)

4. The ISM of z=2 galaxies can now be resolved!
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Observing the ISM at z=2 and above



Telescopes are being build for 
observing gas at high redshift
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… models are lacking behind observations!



Method for simulating ISM observations (SÍGAME)
1. Molecular gas (CO rotational lines)
2. Remaining ISM ([CII] fine structure line)

Summary+Outlook

… models are lacking behind observations!



Molecular gas



Molecular gas
 - how to observe it?



Carbonmonoxide 
CO:

Molecular gas
 - how to observe it?



Frequency  
[GHz]115 345 461 576230

CO(1-0) CO(2-1) CO(3-2) CO(4-3) CO(5-4)

Intensity 

3.1x102 2.7x103 9.5x103 2.3x104 4.5x104 cm-3

Carbonmonoxide 
CO:

Molecular gas
 - how to observe it?



The CO-to-H2 conversion factor

Mmol [M☉]  =  αCO x LCO(1-0) [K km s-1 pc2]



The CO-to-H2 conversion factor

Mmol [M☉]  =  αCO x LCO(1-0) [K km s-1 pc2]

N(H2) [cm-2] = XCO x WCO(1-0) [K km s-1] 
Or, the resolved version:

Two issues: 
1. αCO  changes with galaxy type and redshift 
2. Higher-J CO lines are easier to observe at high redshift 



CO Spectral Line Energy 
Distribution (CO SLED)

[Casey+14]

AGNs



[Casey+14]

AGNs

CO Spectral Line Energy 
Distribution (CO SLED)



Modeling of the CO SLED

[Popping+14] [Narayanan+14] [Lagos+12] 

LIR ~ SFR LFIR ~ SFR ΣSFR 
Shape parametrized according to: 

Jupper Jupper Jupper



SÍGAME
SImulator of GAlaxy Millimeter/submillimeter Emission
Collaborators: Thomas R Greve2, Desika Narayanan3, Robert Thompson4, Christian 

Brinch5,6, Jesper Sommer-Larsen1,7,8, Jesper Rasmussen1,9, Sune Toft1 and Andrew Zirm1 

1 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark 
2 Dept of Physics and Astronomy, University College London 
3 Haverford College, PA, US 

4 Centre for Extragalactic Theory, University of West Cape, South Africa 
5 Centre for Star and Planet formation (Starplan) and Niels Bohr Institute, Denmark 
6 DeIC, Technical University of Denmark 
7 Excellence Cluster Universe, Garching, Germany 
8 Marie Kruses Skole, Farum, Denmark 
9 Department of Physics, Technical University of Denmark

(=‘follow me’ in Spanish)



Galaxy simulations

Density of gas [cm-3]

Cosmological Smoothed Particle Hydrodynamics (SPH) simulations 
(Jesper Sommer-Larsen, see 2005 paper)

SÍGAME



SPH gas 
particle 

(mSPH, nSPH, TSPH, Z, xe) 
(rSPH, vSPH)

SÍGAME



Hot, diffuse, 
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Hot, diffuse, 
ionised gas 

SPH gas 
particle 

Cold, neutral gas

H2, CII

‘PDR’

CO

[Brinch & Hogerheijde 2010] 
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Hot, diffuse, 
ionised gas 

SPH gas 
particle 

Cold, neutral gas 1.

2.

H2, CII

‘PDR’

CO

3.

4.
[Brinch & Hogerheijde 2010] 

GMCs: 
Giant 
Molecular 
Clouds

SÍGAME
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Assumed ISM models

Radiation fields
Relevant for the ionisation and chemistry of GMCs: 

• Far-ultraviolet (FUV) field, G0 
• Cosmic ray field, ζCR 
• Scaled by local SFRD within 5 kpc

SÍGAME



Assumed ISM models

Radiation fields
Relevant for the ionisation and chemistry of GMCs: 

• Far-ultraviolet (FUV) field, G0 
• Cosmic ray field, ζCR 
• Scaled by local SFRD within 5 kpc

GMC mass spectrum
From observations of MW and local galaxies: dN/dmGMC α mGMC-β

SÍGAME



Assumed ISM models

Radiation fields
Relevant for the ionisation and chemistry of GMCs: 

• Far-ultraviolet (FUV) field, G0 
• Cosmic ray field, ζCR 
• Scaled by local SFRD within 5 kpc

GMC mass spectrum
From observations of MW and local galaxies: dN/dmGMC α mGMC-β

GMC radial density profile

R

Plummer radial profile 
• Drops as R-1 in outskirts, finite central value

SÍGAME



Assumed ISM models

Radiation fields
Relevant for the ionisation and chemistry of GMCs: 

• Far-ultraviolet (FUV) field, G0 
• Cosmic ray field, ζCR 
• Scaled by local SFRD within 5 kpc

GMC mass spectrum

Plummer radial profile 
• Drops as R-1 in outskirts, finite central value

From observations of MW and local galaxies: dN/dmGMC α mGMC-β

GMC radial density profile

Size and velocity dispersion of each GMC
Pressure-normalised scaling relations for virialized clouds 

R

SÍGAME



Assumed ISM models

Radiation fields
Relevant for the ionisation and chemistry of GMCs: 

• Far-ultraviolet (FUV) field, G0 
• Cosmic ray field, ζCR 
• Scaled by local SFRD within 5 kpc

GMC mass spectrum
From observations of MW and local galaxies: dN/dmGMC α mGMC-β

GMC radial density profile

Size and velocity dispersion of each GMC
Pressure-normalised scaling relations for virialized clouds 

R

Experimented with!

Plummer radial profile 
• Drops as R-1 in outskirts, finite central value

SÍGAME



A grid of GMC modelsSÍGAME



A grid of GMC models
CO emission determined by 3 parameters:

MGMC

Metallicity Z

FUV field, G0 
(and cosmic ray field)
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A grid of GMC models
CO emission determined by 3 parameters:

MGMC

Metallicity Z

FUV field, G0 
(and cosmic ray field)

SÍGAME

[Olsen+15: arXiv:1507.00012]



The model galaxies, H2 maps

G1 G2 G3
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SFR

Stellar mass [M☉]

[M☉yr-1]

z = 2
[Speagle+14]

SFR = 142 M☉yr-1SFR = 40 M☉yr-1 SFR = 80 M☉yr-1

The model galaxies, H2 maps
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In CO emission

CO(1-0):

G1 G2 G3
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[Olsen+15: arXiv:1507.00012]
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In CO emission

CO(7-6):
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Observed αCO factors depend on galaxy type:

[Tacconi+08]

Milky WayXCO
[M☉ pc-2 /  

(K km s-1 pc-2)]
[cm-2 /  

(K km s-1)]

αCO   

Global αCO (CO-to-H2) factors

Σmol gas  [M☉ pc-2]

SÍGAME



[Tacconi+08]

Milky WayXCO
[M☉ pc-2 /  

(K km s-1 pc-2)]
[cm-2 /  

(K km s-1)]

αCO   

Global αCO (CO-to-H2) factors

Σmol gas  [M☉ pc-2]

Higher in lower metallicity 
environments at low+high z

Observed αCO factors depend on galaxy type:

SÍGAME



[Tacconi+08]

Milky WayXCO
[M☉ pc-2 /  

(K km s-1 pc-2)]
[cm-2 /  

(K km s-1)]

αCO   

Global αCO (CO-to-H2) factors

Σmol gas  [M☉ pc-2]

Higher in lower metallicity 
environments at low+high z

Lower in high surface 
density / starburst 
environments

Observed αCO factors depend on galaxy type:

SÍGAME



[Tacconi+08]

Milky WayXCO
[M☉ pc-2 /  

(K km s-1 pc-2)]
[cm-2 /  

(K km s-1)]

αCO   

Global αCO (CO-to-H2) factors

Σmol gas  [M☉ pc-2]

Higher in lower metallicity 
environments at low+high z

Lower in high surface 
density / starburst 
environments

Observed αCO factors depend on galaxy type:

G1
G2 G3

z~2 MS galaxies:
Like local (U)LIRGs, 
but at low Σmol 

SÍGAME



G1 G2 G3

The αCO factor on resolved scales

[Olsen+15: arXiv:1507.00012]
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G1 G2 G3

Decrease towards centre in αCO 
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as observed in nearby spiral galaxies [Blanc+13, Sandstrom+13] 
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[Olsen+15: arXiv:1507.00012]

Decrease towards centre in αCO 



G1 G2 G3

Nearby spiral NGC 628 [Blanc+13]
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The αCO factor on resolved scales

as observed in nearby spiral galaxies [Blanc+13, Sandstrom+13] 
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Decrease towards centre in αCO 

SÍGAME

[Olsen+15: arXiv:1507.00012]



In z ~ 1.5 normal star-forming galaxies

The CO SLEDSÍGAME
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In z ~ 1.5 normal star-forming galaxies

The CO SLEDSÍGAME

[Olsen+15: arXiv:1507.00012]



In z ~ 1.5 normal star-forming galaxies

The CO SLED

Dense gas component in z ~1.5 galaxies?  
- more observations and modelling will tell

SÍGAME

[Olsen+15: arXiv:1507.00012]



Credit: Wolfgang Brandner (JPL/IPAC), Eva K. 
Grebel (Univ. Washington), You-Hua Chu (Univ. 

Illinois Urbana-Champaign), and NASA

What about regions where the radiation field 
is too high for CO to survive?

i.e. Photo-
dissociation 

Regions (PDRs)

That’s fine but….



carbon



carbonSingly ionized

2P3/2

2P1/2

157.7μm [CII]

Excited by collisions with either electrons, atoms or molecules

⇒ can arise all over the ISM!



The SFR-L[CII] relation

[Malhotra+01]
[De Looze+14]



The SFR-L[CII] relation

SFRs > 100 
M☉yr-1!

1. How does [CII]-SFR relation look for normal galaxies at high-z?

[Malhotra+01]
[De Looze+14]



The origin of [CII] emission

1. How does [CII]-SFR relation look for normal galaxies at high-z?
2. What is the origin of [CII] in the ISM?



Hot, diffuse, 
ionised gas 

(mSPH, nSPH, TSPH, xe) 
(rSPH, vSPH)

SPH gas 
particle 

Cold, neutral gas

GMCs

1.

2.

H2, CII

‘PDR’

CO

3.

4.
[Brinch & Hogerheijde 2010] 

(for CO)SÍGAME



Hot, diffuse, 
ionised gas 

(mSPH, nSPH, TSPH, xe) 
(rSPH, vSPH)

SPH gas 
particle 

Cold, neutral gas

GMCs

1.

2.

‘molecular’

‘PDR’

CO

3.

4.

(for [CII])

Analytic calculation 
using the large 

velocity gradient 
(LVG) 

approximation

‘HII’

SÍGAME



7 z~2 star-forming galaxies
Cosmological simulations (Gadget-3) at z=2 by [Thompson+14]

SFR

Stellar mass [M☉]

[M☉ yr-1]

SÍGAME



7 z~2 star-forming galaxies
Cosmological simulations (Gadget-3) at z=2 by [Thompson+14]

SFR

Stellar mass [M☉]

[M☉ yr-1]

SFRs ~ 5-60 M☉ yr-1

SÍGAME



The SFR-L[CII] relation
On the [CII]-SFR relation as observed from z=0 to z~6.5:

SÍGAME

[Olsen+15: arXiv:1507.00362]

[Malhotra+01]
[De Looze+14]



The SFR-L[CII] relation
On the [CII]-SFR relation as observed from z=0 to z~6.5:

SÍGAME

[Olsen+15: arXiv:1507.00362]
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The SFR-L[CII] relation
On the [CII]-SFR relation as observed from z=0 to z~6.5:

SÍGAME

[Olsen+15: arXiv:1507.00362]

• Slope: 1.27±0.17 significantly (𝜎>1) steeper than that of z~0 galaxy 
samples (spirals and (U)LIRGs) 

• Crossing local galaxies at about 10

[Malhotra+01]
[De Looze+14]



The SFR-L[CII] relation
From different ISM phases:

SÍGAME

[Olsen+15: arXiv:1507.00362]



The SFR-L[CII] relation
From different ISM phases:

SÍGAME

[Olsen+15: arXiv:1507.00362]

High SFR:  
molecular gas 
dominates [CII] 

luminosity

Low SFR:  
PDRs dominate [CII] 

luminosity
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The origin of [CII] emissionSÍGAME
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• [CII] from molecular gas dominates at low radii, 
PDRs at higher radii



The origin of [CII] emissionSÍGAME

[Olsen+15: arXiv:1507.00362]

• Total [CII] (grey) does not always follow SFR profile

• [CII] from molecular gas dominates at low radii, 
PDRs at higher radii



The origin of [CII] emission

Resolved Σ[CII]-ΣSFR 
relation:

[Olsen+15: arXiv:1507.00362]

SÍGAME



The origin of [CII] emission

Resolved Σ[CII]-ΣSFR 
relation:

• Agreement with 
observations 

• Again: Molecular gas 
only dominating at 
high ΣSFR

[Olsen+15: arXiv:1507.00362]

De Looze+14 
Herrera-Camus+15 
Kapala+15

SÍGAME



‘[CII] efficiency’

[Olsen+15: arXiv:1507.00362]
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‘[CII] efficiency’

[Olsen+15: arXiv:1507.00362]

SÍGAME



Summary

• local UV and cosmic ray fields 
• cosmological simulations 
• several ISM phases 
• radiative transfer code

SÍGAME - a novel method by simultaneously including 

CO rotational transitions:
• reproduced CO luminosities of normal star-forming galaxies at z~2 
• good tracer of molecular gas with αCO factors about 1/3 x the MW 
• decreasing αCO towards center

Applied at z=2 for simulating:

[CII] fine structure line:
• reproduced [CII] luminosities of normal star-forming galaxies at z~0 
• good tracer of SFR with a steeper slope than at low z 
• boost of [CII] for: high molecular gas mass, metallicity and pressure



Outlook

1. Make predictions for z~6 galaxies

SÍGAME - focusing on [CII] at higher redshift! 

Vallini+15
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- low metallicity?
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molecular clouds by 
star formation?



Outlook

1. Make predictions for z~6 galaxies

SÍGAME - focusing on [CII] at higher redshift! 

Vallini+15

z~5-7
 upper limits

- low metallicity?

- disruption of 
molecular clouds by 
star formation?

- no star formation, 
no metallicity in 
their models…



Outlook

2. Improve on method

SÍGAME - focusing on [CII] at higher redshift! 

• dust radiative transfer incorporated (Powderday; D. Narayanan) 
• cosmological simulations with more complex chemistry (RAMSES

+KROME; E. Scannapieco and others) 
• larger variation in galaxy sample (Z, SFR etc.)



Outlook

3. Bridging the gap…

SÍGAME - focusing on [CII] at higher redshift! 

• direct comparison with 

observations of normal star-

forming galaxies at z~2 with 

[CII] AND CO detections

HELLO galaxy sample



Summary

• local UV and cosmic ray fields 
• cosmological simulations 
• several ISM phases 
• radiative transfer code

SÍGAME - a novel method by simultaneously including 

CO rotational transitions:
• reproduced CO luminosities of normal star-forming galaxies at z~2 
• good tracer of molecular gas with αCO factors about 1/3 x the MW 
• decreasing αCO towards center

Applied at z=2 for simulating:

[CII] fine structure line:
• reproduced [CII] luminosities of normal star-forming galaxies at z~2 
• good tracer of SFR with a steeper slope than at low z 
• boost of [CII] for: high molecular gas mass, metallicity and pressure

thank you!!


