Sep 18 2015

The Interstellar Medium: Modeling and Observing

Karen Pardos Olsen

Exploration Fellow at

SCHOOL OF EARTH & SPACE EXPLORATION

STATE UNIVERSITY ARIZONA

Ex-supervisors:

Sune Toft (DARK) and Thomas Greve (UCL)

ALL PROPERTY

Galaxy evolution

Big Bang

Radiation era

~300,000 years: "Dark ages" begin

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

~13.7 billion years: Present

Galatiesevolve

~13.7 billion years: Present

Andromeda (M31) in optical

Credit: Robert Gendler

Main Sequence (MS)

Main Sequence (MS)

Main Sequence (MS)

Andromeda (M31) in optical

Credit: Robert Gendler

How are stars formed?

Out of dense, cold gas

Carina Nebula, credit: NASA, ESA and

the Hubble SM4 ERO Team

Andromeda (M31) in optical

Credit: Robert Gendler

Gas mass fraction

log M_{mol}/M_{stars}

redshift z

Gas mass fraction

log M_{mol}/M_{stars}

Can higher gas fraction explain the redshift evolution of MS?

redshift z

Towards a better understanding the Interstellar Medium (ISM)

Models of galaxy evolution have been focused on stellar and dark matter component

Towards a better understanding the Interstellar Medium (ISM)

Models of galaxy evolution have been focused on stellar and dark matter component

Towards a better understanding the Interstellar Medium (ISM)

Models of galaxy evolution have been focused on stellar and dark matter component

Simulations on smaller scale follow the actual star formation

[Dale+12]

~13.7 billion years: Present

~13.7 billion years: Present

z ~ 2: A phase change

z ~ 2: A phase change

1. Peak of cosmic SFR density [e.g. Madau+14] (the universe was more efficient at producing stars)

z ~ 2: A phase change

1. Peak of cosmic SFR density [e.g. Madau+14] (the universe was more efficient at producing stars)

2. Peak of galactic nucleus activity [e.g. Bauer+10] (SMBHs were consuming more gas)

3. Higher (major) merger rate than today [e.g. Man+14] (galaxies were interacting more)

4. The ISM of z=2 galaxies can now be resolved!

Observing the ISM at z=2 and above

Observing the ISM at z=2 and above

Telescopes are being build for observing gas at high redshift

Observing the ISM at z=2 and above

Telescopes are being build for observing gas at high redshift

. models are lacking behind observations!

... models are lacking behind observations!

... models are lacking behind observations!

Method for simulating ISM observations (SIGAME) 1. Molecular gas (CO rotational lines) 2. Remaining ISM ([CII] fine structure line) Summary+Outlook

Molecular gas

Molecular gas - how to observe it?

Molecular gas - how to observe it?

Carbonmonoxide CO:

Molecular gas - how to observe it?

The CO-to-H2 conversion factor

 $M_{mol} [M_{\odot}] = \alpha_{CO} \times L_{CO(1-0)} [K \ km \ s^{-1} \ pc^{2}]$

The CO-to-H2 conversion factor

 $M_{mol} [M_{\odot}] = \alpha_{CO} \times L_{CO(1-0)} [K \ km \ s^{-1} \ pc^{2}]$

Or, the resolved version:

 $N(H_2) [cm^{-2}] = X_{CO} \times W_{CO(1-0)} [K \text{ km s}^{-1}]$

Two issues:

1. α_{CO} changes with galaxy type and redshift

2. Higher-J CO lines are easier to observe at high redshift

CO Spectral Line Energy Distribution (CO SLED)

[Casey+14]

[Casey+14]
Modeling of the CO SLED

Shape parametrized according to:

SImulator of GAlaxy Millimeter/submillimeter Emission

Collaborators: Thomas R Greve², Desika Narayanan³, Robert Thompson⁴, Christian Brinch^{5,6}, Jesper Sommer-Larsen^{1,7,8}, Jesper Rasmussen^{1,9}, Sune Toft¹ and Andrew Zirm¹

- ¹ Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark
- ² Dept of Physics and Astronomy, University College London
- ³ Haverford College, PA, US
- ⁴ Centre for Extragalactic Theory, University of West Cape, South Africa
- ⁵ Centre for Star and Planet formation (Starplan) and Niels Bohr Institute, Denmark
- ⁶ DeIC, Technical University of Denmark
- ⁷ Excellence Cluster Universe, Garching, Germany
- ⁸ Marie Kruses Skole, Farum, Denmark
- ⁹ Department of Physics, Technical University of Denmark

(='follow me' in Spanish)

Cosmological Smoothed Particle Hydrodynamics (SPH) simulations (Jesper Sommer-Larsen, see 2005 paper)

SPH gas particle (MSPH, NSPH, TSPH, Z, Xe) (**r**SPH, **VSPH**)

Assumed ISM models

Radiation fields

GAME

z

Relevant for the ionisation and chemistry of GMCs:

- Far-ultraviolet (FUV) field, G₀
- Cosmic ray field, ζ_{CR}
- Scaled by local SFRD within 5 kpc

Assumed ISM models

Radiation fields

Relevant for the ionisation and chemistry of GMCs:

- Far-ultraviolet (FUV) field, G₀
- Cosmic ray field, ζ_{CR}
- Scaled by local SFRD within 5 kpc

GMC mass spectrum

From observations of MW and local galaxies: $dN/dm_{GMC} \alpha m_{GMC}^{-\beta}$

Radiation fields

Relevant for the ionisation and chemistry of GMCs:

- Far-ultraviolet (FUV) field, G₀
- Cosmic ray field, ζ_{CR}
- Scaled by local SFRD within 5 kpc

GMC mass spectrum

From observations of MW and local galaxies: $dN/dm_{GMC} \alpha m_{GMC}^{-\beta}$

GMC radial density profile

Plummer radial profile

R

• Drops as R⁻¹ in outskirts, finite central value

Radiation fields

Relevant for the ionisation and chemistry of GMCs:

- Far-ultraviolet (FUV) field, G₀
- Cosmic ray field, ζ_{CR}
- Scaled by local SFRD within 5 kpc

GMC mass spectrum

From observations of MW and local galaxies: $dN/dm_{GMC} \alpha m_{GMC}^{-\beta}$

GMC radial density profile

Plummer radial profile

• Drops as R-1 in outskirts, finite central value

Size and velocity dispersion of each GMC Pressure-normalised scaling relations for virialized clouds

Assumed ISM models

Experimented with!

Radiation fields

Relevant for the ionisation and chemistry of GMCs:

- Far-ultraviolet (FUV) field, G₀
- Cosmic ray field, ζ_{CR}
- Scaled by local SFRD within 5 kpc

GMC mass spectrum From observations of MW and local galaxies: $dN/dm_{GMC} \alpha m_{GMC}^{-\beta}$

GMC radial density profile

Drops as R⁻¹ in outskirts, finite central value

R

Size and velocity dispersion of each GMC Pressure-normalised scaling relations for virialized clouds

CO emission determined by 3 parameters:

CO emission determined by 3 parameters:

CO emission determined by 3 parameters:

The model galaxies, H₂ maps

The model galaxies, H₂ maps

In CO emission

3 normal star-forming galaxies at z=2

[[]Olsen+15: arXiv:1507.00012]

In CO emission

3 normal star-forming galaxies at z=2

[[]Olsen+15: arXiv:1507.00012]

Observed α_{CO} factors depend on galaxy type:

αco [M_o pc⁻² / (K km s⁻¹ pc⁻²)]

αco [M_o pc⁻² / (K km s⁻¹ pc⁻²)]

Decrease towards centre in α_{CO}

α_{co} [M_° pc⁻² / (K km s⁻¹ pc⁻²)]

Decrease towards centre in α_{CO} as observed in nearby spiral galaxies [Blanc+13, Sandstrom+13]

α_{co} [M₀ pc⁻² / (K km s⁻¹ pc⁻²)]

Nearby spiral NGC 628 [Blanc+13]

The CO SLED

In z ~ 1.5 normal star-forming galaxies

The CO SLED

In z ~ 1.5 normal star-forming galaxies

The CO SLED

In z ~ 1.5 normal star-forming galaxies

[Olsen+15: arXiv:1507.00012]
That's fine but.... What about regions where the radiation field is too high for CO to survive?

i.e. Photodissociation Regions (PDRs)

carbon

Excited by collisions with either electrons, atoms or molecules

 \Rightarrow can arise all over the ISM!

The SFR-L_[CII] relation

The SFR-L_[CII] relation

I. How does [CII]-SFR relation look for normal galaxies at high-z?

How does [CII]-SFR relation look for normal galaxies at high-z?
 What is the origin of [CII] in the ISM?

7 z~2 star-forming galaxies

Cosmological simulations (Gadget-3) at z=2 by [Thompson+14]

The SFR-L[CII] relation

On the [CII]-SFR relation as observed from z=0 to $z\sim6.5$:

The SFR-L[CII] relation

On the [CII]-SFR relation as observed from z=0 to $z\sim6.5$:

The SFR-L_[CII] relation

On the [CII]-SFR relation as observed from z=0 to $z\sim6.5$:

- Slope: 1.27±0.17 significantly (σ>1) steeper than that of z~0 galaxy samples (spirals and (U)LIRGs)
- Crossing local galaxies at about $10\,\text{M}_\odot\,\,\text{yr}^{-1}$

The SFR-L[CII] relation

From different ISM phases:

[Olsen+15: arXiv:1507.00362]

The SFR-L[CII] relation

From different ISM phases:

SIGAME The origin of [CII] emission

[Olsen+15: arXiv:1507.00362]

10

0.1

0.01

0.001

10

10

0.1

0.01

0.001

10

SFR [M_o yr⁻¹

[M_☉ yr⁻¹

SFR

Resolved $\Sigma_{[CII]}$ - Σ_{SFR} relation:

GAME

Resolved $\Sigma_{[CII]}$ - Σ_{SFR} relation:

 Agreement with observations

ME

- 🗙 De Looze+14
- Herrera-Camus+15
- Kapala+15
- Again: Molecular gas only dominating at high Σ_{SFR}

[Olsen+15: arXiv:1507.00362]

Summary

- **SIGAME** a novel method by simultaneously including
- local UV and cosmic ray fields ullet
- cosmological simulations ullet
- several ISM phases \bullet
- radiative transfer code

Applied at z=2 for simulating:

CO rotational transitions:

- reproduced CO luminosities of normal star-forming galaxies at z~2
- good tracer of molecular gas with α_{CO} factors about 1/3 x the MW
- decreasing α_{CO} towards center

[CII] fine structure line:

- reproduced [CII] luminosities of normal star-forming galaxies at $z \sim 0$ ightarrow
- good tracer of SFR with a steeper slope than at low z
- boost of [CII] for: high molecular gas mass, metallicity and pressure ightarrow

ŚÍGAME

- focusing on [CII] at higher redshift!

1. Make predictions for z~6 galaxies

ŚÍGAME

- focusing on [CII] at higher redshift!

1. Make predictions for z~6 galaxies

SÍGAME

- focusing on [CII] at higher redshift!

1. Make predictions for z~6 galaxies

- low metallicity?

- disruption of molecular clouds by star formation?

ŚÍGAME

- focusing on [CII] at higher redshift!

1. Make predictions for z~6 galaxies

- low metallicity?

- disruption of molecular clouds by star formation?

no star formation,
no metallicity in
their models...

- **SIGAME** focusing on [CII] at higher redshift!
 - Improve on method 2.
 - dust radiative transfer incorporated (Powderday; D. Narayanan) ightarrow
 - cosmological simulations with more complex chemistry (RAMSES) ightarrow+KROME; E. Scannapieco and others)
 - larger variation in galaxy sample (Z, SFR etc.) ightarrow

ŚÍGAME

- focusing on [CII] at higher redshift!

- 3. Bridging the gap...
 - direct comparison with
 observations of normal star forming galaxies at z~2 with
 [CII] AND CO detections

HELLO galaxy sample

Summary

ŚÍGAME

- a novel method by simultaneously including
- local UV and cosmic ray fields
- cosmological simulations
- several ISM phases
- radiative transfer code

Applied at z=2 for simulating:

CO rotational transitions:

- good tracer of molecular gas with α_{CO} factors about 1/3 x the MW
- decreasing α_{CO} towards center

[CII] fine structure line:

- reproduced [CII] luminosities of normal star-forming galaxies at $z\sim 2$
- good tracer of SFR with a steeper slope than at low z
- boost of [CII] for: high molecular gas mass, metallicity and pressure

